p-group, metabelian, nilpotent (class 4), monomial
Aliases: C24.3D4, C23.1Q16, C23.5SD16, C2.6C2≀C4, C23⋊C8.4C2, (C22×Q8)⋊1C4, C22.17C4≀C2, (C22×C4).10D4, C2.C42⋊5C4, C23⋊Q8.1C2, C2.5(C42⋊3C4), C23.9D4.4C2, C22.58(C23⋊C4), C23.158(C22⋊C4), C22.16(Q8⋊C4), C2.4(C23.31D4), (C22×C4).5(C2×C4), (C2×C22⋊C4).84C22, SmallGroup(128,83)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C22 — C23 — C24 — C2×C22⋊C4 — C23⋊Q8 — C23.Q16 |
C1 — C22 — C23 — C2×C22⋊C4 — C23.Q16 |
C1 — C22 — C23 — C2×C22⋊C4 — C23.Q16 |
Generators and relations for C23.Q16
G = < a,b,c,d,e | a2=b2=c2=d8=1, e2=bd4, dad-1=ab=ba, ac=ca, eae-1=abc, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=acd-1 >
Subgroups: 252 in 81 conjugacy classes, 20 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, Q8, C23, C23, C22⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C24, C2.C42, C2.C42, C22⋊C8, C2×C22⋊C4, C2×C22⋊C4, C22×Q8, C23⋊C8, C23.9D4, C23⋊Q8, C23.Q16
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, SD16, Q16, C23⋊C4, Q8⋊C4, C4≀C2, C23.31D4, C2≀C4, C42⋊3C4, C23.Q16
Character table of C23.Q16
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | -1 | i | 1 | 1 | i | -i | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | 1 | -i | -1 | 1 | -i | i | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | 1 | i | -1 | 1 | i | -i | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | -1 | -i | 1 | 1 | -i | i | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ12 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ13 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | 1-i | 0 | -1-i | 0 | 0 | 1+i | -1+i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ14 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | -1-i | 0 | 1-i | 0 | 0 | -1+i | 1+i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ15 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | -1+i | 0 | 1+i | 0 | 0 | -1-i | 1-i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ16 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | 1+i | 0 | -1+i | 0 | 0 | 1-i | -1-i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ18 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ20 | 4 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ22 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C42⋊3C4 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C42⋊3C4 |
(1 5)(2 10)(3 18)(4 31)(6 14)(7 22)(8 27)(9 13)(11 26)(12 23)(15 30)(16 19)(17 25)(20 24)(21 29)(28 32)
(1 13)(2 25)(3 15)(4 27)(5 9)(6 29)(7 11)(8 31)(10 17)(12 19)(14 21)(16 23)(18 30)(20 32)(22 26)(24 28)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 17)(7 18)(8 19)(9 28)(10 29)(11 30)(12 31)(13 32)(14 25)(15 26)(16 27)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 6 9 25)(2 13 29 5)(3 16 11 19)(4 18 31 26)(7 12 15 23)(8 22 27 30)(10 24 21 32)(14 20 17 28)
G:=sub<Sym(32)| (1,5)(2,10)(3,18)(4,31)(6,14)(7,22)(8,27)(9,13)(11,26)(12,23)(15,30)(16,19)(17,25)(20,24)(21,29)(28,32), (1,13)(2,25)(3,15)(4,27)(5,9)(6,29)(7,11)(8,31)(10,17)(12,19)(14,21)(16,23)(18,30)(20,32)(22,26)(24,28), (1,20)(2,21)(3,22)(4,23)(5,24)(6,17)(7,18)(8,19)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,6,9,25)(2,13,29,5)(3,16,11,19)(4,18,31,26)(7,12,15,23)(8,22,27,30)(10,24,21,32)(14,20,17,28)>;
G:=Group( (1,5)(2,10)(3,18)(4,31)(6,14)(7,22)(8,27)(9,13)(11,26)(12,23)(15,30)(16,19)(17,25)(20,24)(21,29)(28,32), (1,13)(2,25)(3,15)(4,27)(5,9)(6,29)(7,11)(8,31)(10,17)(12,19)(14,21)(16,23)(18,30)(20,32)(22,26)(24,28), (1,20)(2,21)(3,22)(4,23)(5,24)(6,17)(7,18)(8,19)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,6,9,25)(2,13,29,5)(3,16,11,19)(4,18,31,26)(7,12,15,23)(8,22,27,30)(10,24,21,32)(14,20,17,28) );
G=PermutationGroup([[(1,5),(2,10),(3,18),(4,31),(6,14),(7,22),(8,27),(9,13),(11,26),(12,23),(15,30),(16,19),(17,25),(20,24),(21,29),(28,32)], [(1,13),(2,25),(3,15),(4,27),(5,9),(6,29),(7,11),(8,31),(10,17),(12,19),(14,21),(16,23),(18,30),(20,32),(22,26),(24,28)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,17),(7,18),(8,19),(9,28),(10,29),(11,30),(12,31),(13,32),(14,25),(15,26),(16,27)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,6,9,25),(2,13,29,5),(3,16,11,19),(4,18,31,26),(7,12,15,23),(8,22,27,30),(10,24,21,32),(14,20,17,28)]])
Matrix representation of C23.Q16 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
14 | 3 | 0 | 0 | 0 | 0 |
14 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 16 |
0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 0 | 16 | 16 | 16 |
0 | 0 | 0 | 0 | 1 | 1 |
12 | 12 | 0 | 0 | 0 | 0 |
12 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 16 | 0 | 16 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,2,16,0,0,0,0,0,0,1,0,0,0,0,0,2,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[14,14,0,0,0,0,3,14,0,0,0,0,0,0,1,16,0,0,0,0,1,16,16,0,0,0,0,0,16,1,0,0,16,0,16,1],[12,12,0,0,0,0,12,5,0,0,0,0,0,0,0,0,16,0,0,0,1,16,16,0,0,0,1,0,0,0,0,0,1,0,16,1] >;
C23.Q16 in GAP, Magma, Sage, TeX
C_2^3.Q_{16}
% in TeX
G:=Group("C2^3.Q16");
// GroupNames label
G:=SmallGroup(128,83);
// by ID
G=gap.SmallGroup(128,83);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,120,422,387,520,1690,521,2804]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=1,e^2=b*d^4,d*a*d^-1=a*b=b*a,a*c=c*a,e*a*e^-1=a*b*c,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*c*d^-1>;
// generators/relations
Export